ECON 702 Macroeconomics I

Discussion Handout 1^*

26 January 2024

Math review

Logarithms and Exponents. Why should we review them? The manipulation of growth rates requires the use of logarithms and exponential functions.
 Exponentiation involves two numbers, the base b and the exponent n. Exponentiation corresponds to the operation

 b^n .

that is multiplying the base b by itself n times.

Logarithm is the inverse operation to exponentiation. It asks the question how many times do I have to multiply the base b by itself to obtain a given value x. The answer, call it z, therefore solves

$$b^z = x,$$

and z is called the logarithm of x with base b, written as

$$\log_b(x)$$
.

Natural logarithm uses as base the number e = 2.71828, so called Euler's number. The notation for the natural logarithm is log(x).

Basic rules of Exponents and Logarithms. Exponents satisfy the following basic rules:

$$b^{m+n} = b^m \cdot b^n$$

$$(b^m)^n = b^{m \cdot n}$$

$$(b \cdot c)^n = b^n \cdot c^n.$$

For any numbers x, y > 0 logarithms satisfy the following rules:

$$\log(x \cdot y) = \log(x) + \log(y)$$
$$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$
$$\log(x^n) = n\log(x),$$

^{*}Teaching Assistants: Anna Lukianova (Email:lukianova@wisc.edu) and John Ryan (Email: john.p.ryan@wisc.edu). Based on the lecture notes by Jesus Fernandez-Villaverde and Dirk Krueger.

and for any base $b \neq e$ we can transform expressions into the natural logarithm by the formula

$$\log_b(x) = \frac{\log(x)}{\log(b)}.$$

• First Order Taylor Series Expansions.

Consider an arbitrary function f(x) that is differentiable. Then the first order Taylor approximation of f(x) around the point x_0 is given by

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

The idea is that close to x_0 ($x \to x_0$) any smooth (that is, differentiable) function is roughly linear in its argument x (with a slope of $f'(x_0)$).

Exercises on Growth Rates

We define the growth rate of a variable Y (say real GDP) from period t to t + 1 as

$$g_{Y,t+1} = \frac{Y_{t+1} - Y_t}{Y_t}.$$

Assume discrete time for exercises 1-4 and continuous time for exercise 5.

1. Show that the growth rate of a variable Y_t is approximately equal to its log-difference from one period to another:

$$g_{Y,t+1} \approx \log(Y_{t+1}) - \log(Y_t).$$

Is this true for any size of the growth rate $g_{Y,t+1}$?

2. Suppose at period 0 GDP equals 100 and GDP grows at a constant rate of 3% per year. In how many years will GDP double? (Give an exact or an approximate answer.) 3. The growth rate of GDP, Y_t , equals 4%, and the growth rate of the population, N_t , equals 1%. Derive the formula for the growth rate of GDP per capita, $y_t = Y_t/N_t$, using the quotient (ratio) logarithm rule and the result from Exercise 1. Compute the growth rate of GDP per capita. Note that the formula gives a good approximation only when the growth rates are small.

4. Suppose that production follows a Cobb-Douglas technology: $Y_t = B_t K_t^{\alpha} L_t^{1-\alpha}$, where B_t denotes productivity in period t, K_t - capital in period t, and L_t - labor in period t. Derive a growth rate of Y_t as a function of growth rates of B_t , K_t , and L_t . What is the contribution of labor growth to GDP growth?

5. Show that in continuous time taking a logarithm of a function x(t) of time and then taking the derivative with respect to time t gives the growth rate. Apply this approach to derive the growth rate of GDP per capita as a function of the growth rate of GDP and the growth rate of the population. What are the benefits of working in continuous time?