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16 February 2024

1 Content review

o The social planner’s problem is to maximize utility of the household subject to resource
feasibility. (Assume A; = 1 for notation)
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o The first welfare theorem states that if a competitive equilibrium exists and there are
no externalities, market power, or imperfect information, then the competitive equilibrium
allocation solves the social planner’s problem.

— This is proved by showing that the Euler equation of the household in CE matches
the optimality condition of the social planner.
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o The second welfare theorem states that the allocation which solves the social planner’s
problem can be implemented as a competitive equilibrium.

— This is proved by finding some prices {r;, w;} such that the allocation as a function
of prices matches the solution to the social planner’s problem.

e The Golden Rule is the steady state level of capital that maximizes period consumption,

k9 = (%)ﬁ However, this does not account for household discounting. The modified

Golden Rule is the steady state capital which maximizes lifetime utility of the household
1
including discounting, k* = (5%,) ™.

*Teaching Assistants: Anna Lukianova (Email:lukianova@wisc.edu) and John Ryan (Email:
john.p.ryan@wisc.edu). Based on the lecture notes by Jesus Fernandez-Villaverde and Dirk Krueger.
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2 Perfect complements production

Consider an environment such as that which we studied in class with a representative household
(exogenous labor supply [ = 1, initial assets ap > 0), except the final good is produced with a
Leontief production function, y, = f(ki, l;) = min{k,, Al;}.

1. Show that the production function demonstrates constant returns to scale and that both
inputs are necessary for production.

Solution: f has CRSiff VA > 0, f(A\x) = Af(z).
Let A > 0.

o Case 1: ky < Al;. So f(t,Aly) = min{k;, Al;} = k;. Also, since A > 0, we have
)\kt < )\Alt ThUS, f()\kt, )\Alt) = min{)\kt, )\Alt} = )\kt = )\f(t, Alt)

o Case 2: k; > Al;. So f(t, Aly) = min{k;, Al;} = Al;. Also, since A > 0, we have
)\kt > )\Alt ThUS, f()\kt, )\Alt) = min{)\kt, )\Alt} = )\Alt = )\f(t, Alt)

In both cases, we have the desired result, and thus f has constant returns to scale.

2. Define a competitive equilibrium.

Solution:

A competitive equilibrium given aq in this environment is an allocation for households
{¢t, Iy, ar11 }we, an allocation for firms {k;,{; }vi, and prices {py, 74, w; bye, such that:

(a) Given prices and initial assets, the household’s allocation solves their utility maxi-
mization problem (standard, but should write for practice).

(b) Given prices, the firm’s allocation solves their profit maximization problem.

max minf{k,, Aly} — peky — wyly

(c) Markets clear Vt:

Cct + kt+1 = mm{kt, Alt} + (1 - 5)kt
kt = Q¢
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3. Assume u; < 1. What must be the capital choice of the firm in a competitive equilibrium?
(Hint: the labor market must clear in equilibrium).

Solution:



A competitive equilibrium requires that a firm chooses [; = 1 since markets clear. Given
that the firm is choosing this, the firm’s marginal product of capital is MPK = 1 if
k; < A, and MPK = 0 otherwise. Thus, the firm will hire capital until marginal cost
equals marginal revenue. Since u; < 1 (by assumption, but can be verified later), the MC
of hiring an addition unit of capital is lower than the MR until k; = A. Thus, the firm’s
choice of capital in a competitive equilibrium in which pu; < 1 is k;, = A. Note that we
can’t use the typical u, = M PK since the marginal product of capital does not exist at
ky = Aly.

. In a steady state equilibrium with 6 = 0, and firms earning zero profit, what are the
prices in the economy? (if it helps, you can assume that 8 € (.5,1).

Solution:
Since 6 = 0, we have that p; = ;. Recall the household’s Euler equation:

u'(c) = B(1+ rep)u/ (crpn)

In a steady state, we have that ¢; = ¢;11, so we should have that

1
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Since the firm’s choice of capital is k; = A, and i, =1, = %3 — 1, the firm’s profit is

min{kt, Alt} — ,thk/’t — wtlt = A — <% — ]_)A — Wt

. Since firm profits are zero, we have that w; = (2 — %)

. What are the allocations for the household and the firm in a steady state competitive
equilibrium?

Solution: Using market clearing, we have that a; = a;4.1 = A. The households budget
constraint is

e+ a = w4+ (1+ 1)

Which gives us

1 1
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So the allocations are {c¢;, a;1} = {A, A} for the household, and {k;,l;} = {A, 1}

. Write the planner’s problem.

Solution:
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7. Does the competitive equilibrium allocation solve the social planner’s problem?

Solution:

This problem is not easy to solve for an arbitrary kg < A since we cannot use first order
conditions for ky;1y. However, since there is no market power, imperfect information, or
externalities, we know that the competitive equilibrium allocation does solve the planner’s
problem by the first welfare theorem.
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