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The Solow Model

In the neoclassical growth model considered in the class so far, households (or the social planner
for them) decide optimally how much to save. In other words, the saving rate s, that is the
fraction of income (output) that is being saved, was chosen optimally. In the Solow model, the
saving rate s is a fixed number that is taken as given.

Consider an infinite-period environment, in which the households’ preferences are described by
the utility function u(c), while final goods are produced with the Cobb-Douglas production
technology: Yt = Kα

t (AtLt)
1−α. The population grows at the constant growth rate n and TFP

grows at the constant rate g. Households save a fraction s of output. Capital depreciates each
period at rate δ.

1. Set up the social planner problem of the Solow model in per capita terms.
Solution.
To write the problem in per capita terms we need to formulate the aggregate output
production function and the aggregate resource constraint in per capita terms. The
production function in per capita terms:

yt ≡
Yt

Nt

=
Kα

t A
1−α
t

Nα
t N

1−α
t

=
Kα

t

Nα
t

(
At

Lt

Nt

)1−α

= kα
t (Atlt)

1−α

The resource constraint in per capita terms:

Ct

Nt

+
Kt+1

Nt+1

Nt+1

Nt︸ ︷︷ ︸
1+n

=
Kα

t (AtLt)
1−α

Nt

+ (1− δ)
Kt

Nt

ct + kt+1(1 + n) = kα
t (Atlt)

1−α + (1− δ)kt.

∗Teaching Assistants: Anna Lukianova (Email:lukianova@wisc.edu) and John Ryan (Email:
john.p.ryan@wisc.edu). Based on the lecture notes by Jesus Fernandez-Villaverde and Dirk Krueger.
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Note that in the model with population growth (n ̸= 0) we have the term (1+n) in front
of capital per capita tomorrow. This is because to keep capital per capita kt+1 at the
same level as kt since there are n more people in period t + 1 than in period t, society
has to spend an extra nkt+1 units of resources.
Since the saving rule is exogenously given, the investments are known

It ≡ Kt+1 − (1− δ)Kt = sYt.

In per capita terms:

it = (1 + n)kt+1 − (1− δ)kt = syt.

The problem of the social planner who maximizes per capita lifetime utility subject to
the resource constraint, production technology, and the saving rule is

max
ct,lt,kt+1

∞∑
t=0

βtu(ct)

ct + it = yt

yt = kα
t (Atlt)

1−α

it = (1 + n)kt+1 − (1− δ)kt

it = syt

A0, k0 ≡
K0

N0

is given

ct ≥ 0, 0 ≤ lt ≤ 1, kt+1 ≥ 0

2. Solve the model (find expressions for ct, it, kt+1, yt).
Solution.
First, notice that since the households do not value leisure in their utility function it
is optimal for the social planner to let households work full-time. So, lt = 1 for all
t = 0, 1, 2, ....
Second, in the Solow model all endogenous variables are pinned down from the constraints
of the social planner. Recall that we k0 is given. Then,

y0 = kα
0A

1−α
0

is known. Hence, we can find investments as the saving rule is exogenously given:

i0 = sy0 = skα
0A

1−α
0 .

Consumption is pinned down by the resource constraint:

c0 = y0 − i0 = y0 − sy0 = (1− s)y0.

Once we know investments i0 we can find capital per capita in period 1:

k1 =
sy0 + (1− δ)k0

1 + n
.

Then we can compute A1 = (1 + g)A0 and find y1, c1, i1 and so on. The policy function
for capital is

kt+1 =
skα

t A
1−α
t + (1− δ)kt
1 + n
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3. (*) Show that on the BGP capital per capita and consumption per capita grow at the
growth rate of TFP, g. Show that aggregate capital and aggregate consumption grow at
the growth rate of g + n (if g and n are small).
Solution.
Let’s assume that on the BGP consumption per capita grows at the constant rate gc, and
capital per capita grows at the constant rate gk. Then, the resource constraint on the
BGP is

(1 + gc)
tc+ (1 + n)(1 + gk)

t+1k = ((1 + gk)
tk)α((1 + g)tA0)

1−α + (1− δ)(1 + gk)
tk.

Divide the both sides of the equation by (1 + gk)
t:(

1 + gc
1 + gk

)t

c+ (1 + n)(1 + gk)k = (1 + gk)
tα−tkα((1 + g)tA0)

1−α + (1− δ)k(
1 + gc
1 + gk

)t

c+ [(1 + n)(1 + gk)− (1− δ)]k =

[(
1 + g

1 + gk

)1−α
]t

kα.

This equation has to hold for any period. It is possible if and only if

1 + gc
1 + gk

=

(
1 + g

1 + gk

)1−α

= 1.

Otherwise, the left-hand side and the right-hand side will grow at different rates. Since
α ∈ (0, 1) the condition is true if gc = gk = g.
The growth rates of aggregate capital and aggregate consumption are

gK = gk∗N ≈ gk + gN = g + n

gC = gc∗N ≈ gc + gN = g + n.

The approximation is good if g and n are small.

4. Derive the BGP initial capital stock per capita, consumption per capita, and output per
capita assuming (knowing from the previous question) that these variables grow at the
constant growth rate of TFP, g. Hint: use the resource constraint and recall that the
saving rate, s, dictates how much to save and consume.
Solution.
We assume (and know from the previous question) that on the BGP consumption per
capita and capital per capita grow at rate g. That is, ct = (1+ g)tc, kt = (1+ g)tk where
c and k are some initial levels at the BGP. Hence, the resource constraint along the BGP
can be written as follows:

(1 + g)tc+ (1 + n)(1 + g)t+1k = ((1 + g)tk)α((1 + g)tA0)
1−α + (1− δ)(1 + g)tk

c+ (1 + n)(1 + g)k = kαA1−α
0 + (1− δ)k

c+ [(1 + n)(1 + g)− (1− δ)]k = A1−α
0 kα.

In this equation, there are two unknowns: c and k. Now recall that in the Solow model
the saving rate, s, is given and it dictates that k = sy = skαA1−α

0 , and c = (1 − s)y =
(1− s)kαA1−α

0 . Plug c in the resource constraint to obtain level of capital, k.
(1− s)A1−α

0 kα = A1−α
0 kα − [(1 + n)(1 + g)− (1− δ)]k

sA1−α
0 kα = [(1 + n)(1 + g)− (1− δ)]k

k =

(
[(1 + n)(1 + g)− (1− δ)]

sA1−α
0

) 1
α−1

.
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So, the BGP initial capital stock, consumption per capita, and output per capita in the
Solow model are given by

kSolow =

(
sSolowA1−α

0

[(1 + n)(1 + g)− (1− δ)]

) 1
1−α

cSolow =
(
1− sSolow

)
A1−α

0

(
kSolow

)α
= (1− sSolow)A1−α

0

(
sSolowA1−α

0

[(1 + n)(1 + g)− (1− δ)]

) α
1−α

ySolow = A1−α
0 (kSolow)α = A1−α

0

(
sSolowA1−α

0

[(1 + n)(1 + g)− (1− δ)]

) α
1−α

.

Note that the BGP capital per capita is increasing in the saving rate sSolow. Why?

5. Find the BGP level of capital per capita that allows households to achieve the highest
level of consumption in the long run. In other words, derive the golden rule capital stock.
Solution.
Recall that the BGP level of consumption in period t is (1+ g)tc. To maximize the long-
run BGP level of consumption, we need to maximize the BGP initial level of consumption,
c. From the resource constraint in the BGP, BGP consumption is given by

c = A1−α
0 kα − [(1 + n)(1 + g)− (1− δ)]k.

To determine the golden rule capital stock we take the FOC with respect to k on the
right-hand side:

αA1−α
0 kα−1 − [(1 + n)(1 + g)− (1− δ)] = 0.

Hence,

kGR =

(
αA1−α

0

(1 + n)(1 + g)− (1− δ)

) 1
1−α

.

6. Find the saving rate associated with the golden rule per capita capital stock, sGR. Hint:
recall that s ≡ i

y
.

Solution.

sGR =
iGR

yGR

=
((1 + g)(1 + n)− (1 + δ))kGR

kα
GR

= ((1 + g)(1 + n)− (1 + δ))k1−α
GR .

After plugging the derived formula for kGR, we get

sGR = α.

Note that this result can be easily seen if we compare the formulas for kSolow and kGR.

7. (*) What level of the saving rate in the Solow model guarantees that kSolow equals the
BGP initial level of capital per capita, k, in the neoclassical growth model with CRRA
preferences u(c) = c1−σ

1−σ
?

Solution.
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The BGP initial level of capital per capita in the neoclassical model with CRRA prefer-
ences u(c) = c1−σ

1−σ
is

k =

(
αβA1−α

0

(1 + n)(1 + g)σ − β(1− δ)

) 1
1−α

=

(
αA1−α

0
1
β
(1 + n)(1 + g)σ − (1− δ)

) 1
1−α

.

Note: recall how we derive k.
To answer the question we need to find sSolow such that kSolow = k:(

sSolowA1−α
0

[(1 + n)(1 + g)− (1− δ)]

) 1
1−α

=

(
αA1−α

0
1
β
(1 + n)(1 + g)σ − (1− δ)

) 1
1−α

.

After some math manipulation, we get the following:
sSolow

(1 + n)(1 + g)− (1− δ)
=

α
1
β
(1 + n)(1 + g)σ − (1− δ)

sSolow =
α[(1 + n)(1 + g)− (1− δ)]
1
β
(1 + n)(1 + g)σ − (1− δ)

.

8. (*) Compare the saving rate that maximizes consumption (and output) per capita, sSR,
with the optimal saving rate that maximizes the lifetime utility of households with CRRA
preferences

(
u(c) = c1−σ−1

1−σ

)
, s. Interpret the results.

Solution. First, let’s recall that the saving rate is the fraction of savings (= investments)
in the output:

s =
i

y
=

((1 + g)(1 + n)− (1− δ))k

kαA1−α
0

= ((1 + g)(1 + n)− (1− δ))k1−αA
−(1−α)
0 .

Hence, to compare the saving rates sSR with s that maximizes the lifetime utility in the
neoclassical growth model we need to compare kGR and k:

k =

(
αA1−α

0
1
β
(1 + n)(1 + g)σ − (1− δ)

) 1
1−α

kGR =

(
αA1−α

0

(1 + n)(1 + g)− (1− δ)

) 1
1−α

kGR > k as long as
(1 + g)σ

β
> (1 + g).

This condition should hold for the existence of the social planner solution (why?). Then
this implies that sRG > s. If the social planner can choose the saving rate optimally (in
the neoclassical growth model), then the saving rate for maximizing the lifetime utility
is smaller than one for optimizing long-run consumption.
This happens because the social planner chooses a smaller initial level of capital on the
BGP and if the economy starts with capital stock k0 < k, less capital accumulation is
required. Less capital accumulation means less investment and more consumption in the
short run, which is beneficial for households, especially if they are impatient. Thus the
consumption and utility losses in the BGP from having less consumption than the golden
rule is (more than) compensated by the higher utility along the pathtowards the BGP
(the so-called transition path).
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The AR(1) Process1

Assume that technology evolves as follows:

At = (1 + g)teztA0,

where g is a constant growth rate of technology and zt follows as autoregressive process of order
1 (abbreviated AR(1)) of the form:

zt = ρzt−1 + σεεt,

where 0 < ρ < 1, εt is a productivity shock that comes from a standard normal distribution
N (0, 1), and for simplicity we assume initial conditions A0 = 1 and z−1 = 0. (1 + g)t that
captures the long-run evolution of At with a transitory component ezt .

1. Interpret ezt , εt, ρ, σ.
Solution.
ezt is a component that governs the transitory dynamics of technology. When ezt > 1
(which happens when zt > 0), the technology improves faster than average, and when
ezt < 1 (which happens when zt < 0), the technology improves less than average. If ezt
is very small, that is the economy suffers a large negative shock, it may happen that
At < At−1. zt behaves randomly (there is a productivity shock every period, εt) but
persistently (there is dependence between zt and zt−1). σε is a parameter that controls
the volatility of the shock εt: a large σε means high volatility and a small σε a low
volatility. This affects deviations of zt from zero. ρ is a parameter that controls the
persistence of those deviations: ρ closer to 1 means high persistence, ρ closer to 0 implies
small persistence.
Figure 1 depicts TFP evolution with the model parameters calibrated for the US economy:
ρ̂ = 0.95, σ̂ε = 0.007, ̂log(1 + g) = 0.005, and with normalized A0 to 1. The estimates
have been obtained using the US quarterly data from 1948 to the present time.

Figure 1: Evolution of TFP

1You can learn more about autoregressive processes of higher-order and autoregressive moving average models
(ARMA) in the textbook (p. 213-214, Remark 63).
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2. What are unconditional and conditional expectations of zt? Show that Ezt = 0 and derive
Et−1zt = ρzt−1 for all t.
Solution.
Unconditional expectation (expectation about period t formed in period 0):

Ezt = E[ρzt−1 + σεεt] = E[ρ(ρzt−2 + σεεt−1) + σεεt] = E[ρ(ρ(ρzt−3 + σεεt−2) + σεεt−1) + σεεt] =

= ... = E

(
ρt+1z−1 +

t∑
i=0

ρiσεεt−i

)
= E

(
0 + σε

t∑
i=0

ρiεt−i

)
= σεE

(
t∑

i=0

ρiεt−i

)
=

= σε

(
t∑

i=0

ρiEεt−i

)
= σε

(
t∑

i=0

(ρi · 0)

)
= 0.

A faster way to get this result: assume that E[zt] = µ for all t. Then,

µ = E[ρzt−1 + σεεt] = ρµ+ σε · 0
(1− ρ)µ = 0 → µ = 0.

Conditional expectation (expectation about period t formed in period t−1, implying that
the shock of period t− 1 has been realized and no random anymore):

Et−1zt = Et−1[ρzt−1 + σεεt] = Et−1[ρzt−1] + Et−1[σεεt] = ρzt−1 + σε · 0 = ρzt−1.

We can iterate on this procedure to get

Et−1zt+j = ρj+1zt−1,

which goes to 0 as j → ∞ since ρ ∈ (0, 1).

3. (*) Numerical exercise. Plot the path of the process for technology zt for 300 periods.
Draw 300 productivity shocks ε from the normal distribution N(0, 1) and keep them the
same for the following scenarios:

• (a) ρ = 0.1, σε = 0.002

• (b) ρ = 0.1, σε = 0.008

• (c) ρ = 0.96, σε = 0.002

• (d) ρ = 0.96, σε = 0.008.

Solution.
Figure 2 depicts the dynamics of zt that follows an autoregressive process of order 1 for
four cases.

4. How do we measure productivity shocks under the assumptions of the business cycle
model with Cobb-Douglas production technology?
Solution.

1. Using the Cobb-Douglas production function, yt = kα
t (Atlt)

1−α we can express At:

At =

(
yt
kα
t

) 1
1−α 1

lt
.

So, we need to know yt, kt, lt and α to find At.
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Figure 2: Simulations of four AR(1) processes

(a) (b)

(c) (d)

2. We can collect a time series for output, yt, capital kt, hours worked lt, and labor
income from the national statistical agencies. With the information on labor income
share, we can determine α.

3. We find a time series for TFP {A1, ..., AT} and compute the time trend g and
component zt. We need to estimate a linear regression

log(At) = log(A0) + [log(1 + g)]t+ zt

that is obtained from the assumption on the evolution of At:

At = (1 + g)tA0e
zt .

3. Using any standard statistical software (or even a spreadsheet) and the series {A1, ..., AT},
either with ordinary least squares (OLS) or maximum likelihood (ML) we get the
estimates ̂log(A0), ̂log(1 + g). Part of the output of the regression is the time series
of the residuals, which in our case are interpreted as estimated ẑt, {ẑ1, ..., ẑT}.

4. Finally, we use {ẑ1, ..., ẑT} to estimate ρ and σε using the following regression:

ẑt = ρẑt−1 + σεεt.

You can review the textbook (FVK), pages 223-225, for more details.
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